

    
      
          
            
  
hapsira - Astrodynamics in Python

[image: _images/logo_text.png]
hapsira is an open source (MIT [https://opensource.org/licenses/MIT]) pure Python library for interactive Astrodynamics and Orbital Mechanics, with a focus on ease of use, speed, and quick visualization. It provides a simple and intuitive API, and handles physical quantities with units. It’s a fork of poliastro [http://github.com/poliastro/poliastro], aiming at continuing its development.

View the source code [https://github.com/pleiszenburg/hapsira] of hapsira!

Some of its awesome features are:


	Analytical and numerical orbit propagation


	Conversion between position and velocity vectors and classical orbital elements


	Coordinate frame transformations


	Hohmann and bielliptic maneuvers computation


	Trajectory plotting


	Initial orbit determination (Lambert problem)


	Planetary ephemerides (using SPICE kernels [https://naif.jpl.nasa.gov/naif/data.html] via Astropy [https://www.astropy.org/])


	Computation of Near-Earth Objects (NEOs)




And more to come!

hapsira is developed by an open, international community. Release announcements and general discussion take place on our mailing list [https://groups.io/g/hapsira-dev] and chat [https://matrix.to/#/#hapsira:matrix.org].
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Installation


Requirements

hapsira requires a number of Python packages, notably:


	Astropy [https://www.astropy.org/], for physical units and time handling


	NumPy [https://numpy.org/], for basic numerical routines


	jplephem [https://pypi.org/project/jplephem/], for the planetary ephemerides using SPICE kernels


	matplotlib [https://matplotlib.org/], for static orbit plotting


	numba [https://numba.pydata.org/] (when using CPython), for accelerating the code


	Plotly [https://plotly.com/], for interactive orbit plotting


	SciPy [https://www.scipy.org/], for root finding and numerical propagation




hapsira is supported on Linux, macOS and Windows on Python 3.8 to 3.11.



Using conda

The easiest and fastest way to get the package up and running is to install hapsira using conda [https://conda.io/docs/]:

$ conda install -c conda-forge hapsira





or, better yet, using mamba [https://mamba.readthedocs.io/], which is a super fast replacement for conda:

$ conda install -c conda-forge mamba
$ mamba install -c conda-forge hapsira






Note

We encourage users to use conda or mamba and the conda-forge [https://conda-forge.org/] packages for convenience, especially when developing on Windows. It is recommended to create a new environment.



If the installation fails for any reason, please open an issue in the issue tracker [https://github.com/pleiszenburg/hapsira/issues].



Alternative installation methods

You can also install hapsira from PyPI [https://pypi.python.org/pypi/hapsira/] using pip:

$ pip install hapsira





Finally, you can also install the latest development version of hapsira directly from GitHub [http://github.com/pleiszenburg/hapsira]:

$ pip install https://github.com/pleiszenburg/hapsira/archive/main.zip





This is useful if there is some feature that you want to try, but we did not release it yet as a stable version. Although you might find some unpolished details, these development installations should work without problems. If you find any, please open an issue in the issue tracker [https://github.com/pleiszenburg/hapsira/issues].


Warning

It is recommended that you never ever use sudo with distutils, pip, setuptools and friends in Linux because you might seriously break your system [1 [http://wiki.python.org/moin/CheeseShopTutorial#Distutils_Installation]][2 [http://stackoverflow.com/questions/4314376/how-can-i-install-a-python-egg-file/4314446#comment4690673_4314446]][3 [http://workaround.org/easy-install-debian]][4 [http://matplotlib.1069221.n5.nabble.com/Why-is-pip-not-mentioned-in-the-Installation-Documentation-tp39779p39812.html]]. Use virtual environments [https://docs.python.org/3/library/venv.html] instead.





Making hapsira work in your editor


Jupyter notebook and JupyterLab

To install the extra dependencies needed to make the interactive plots work on Jupyter, do

$ pip install hapsira[jupyter]





With Plotly versions older than 5 on JupyterLab, you will also need to install Node.js to enable the browser extensions. Check out their troubleshooting guide [https://plotly.com/python/troubleshooting/#jupyterlab-problems] for further information.




Problems and suggestions

If for any reason you get an unexpected error message or an incorrect result, or you want to let the developers know about your use case, please open a new issue in the issue tracker [https://github.com/pleiszenburg/hapsira/issues] and we will try to answer promptly.
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Quickstart


Defining the orbit: Orbit objects

The core of hapsira are the Orbit objects inside the hapsira.twobody module. They store all the required information to define an orbit:


	The body acting as the central body of the orbit, for example the Earth.


	The position and velocity vectors or the orbital elements.


	The time at which the orbit is defined.




First of all, you have to import the relevant modules and classes:

from astropy import units as u

from hapsira.bodies import Earth, Mars, Sun
from hapsira.twobody import Orbit







From position and velocity

There are several methods available to create Orbit objects. For example, if you have the position and velocity vectors you can use from_vectors():

# Data from Curtis, example 4.3
r = [-6045, -3490, 2500] << u.km
v = [-3.457, 6.618, 2.533] << u.km / u.s

orb = Orbit.from_vectors(Earth, r, v)





And that’s it! Notice a couple of things:


	Defining vectorial physical quantities using Astropy units is very easy.
The list is automatically converted to a astropy.units.Quantity,
which is actually a subclass of NumPy arrays.


	If you display the orbit you just created, you get a string with the
radius of pericenter, radius of apocenter, inclination, reference
frame and attractor:

>>> orb
7283 x 10293 km x 153.2 deg (GCRS) orbit around Earth (♁) at epoch J2000.000 (TT)







	If no time is specified, then a default value is assigned:

>>> orb.epoch
<Time object: scale='tt' format='jyear_str' value=J2000.000>
>>> orb.epoch.iso
'2000-01-01 12:00:00.000'







	The reference frame of the orbit will be one pseudo-inertial frame around the attractor.
You can retrieve it using the frame property:

>>> orb.get_frame()
<GCRS Frame (obstime=J2000.000, obsgeoloc=(0., 0., 0.) m, obsgeovel=(0., 0., 0.) m / s)>










Intermezzo: quick visualization of the orbit


[image: Plot of the orbit]

If you’re working on interactive mode (for example, using JupyterLab) you can immediately plot the current orbit:

orb.plot()





This plot is made in the so called perifocal frame, which means:


	you’re visualizing the plane of the orbit itself,


	the $(x)$ axis points to the pericenter, and


	the $(y)$ axis is turned $90 \mathrm{^\circ}$ in the direction of the orbit.




The dotted line represents the osculating orbit: the instantaneous Keplerian orbit at that point. This is relevant in the context of perturbations, when the object shall deviate from its Keplerian orbit.


Note

This visualization uses Plotly under interactive environments like Jupyter Notebook or Jupyter Lab while it switches to Matplotlib otherwise. Nevertheless, you can select the drawing backend. Check out the hapsira.plotting.orbit.OrbitPlotter documentation for more information.






From classical orbital elements

You can also define an Orbit using a set of six parameters called orbital elements. Although there are several of these element sets, each one with its advantages and drawbacks, right now hapsira supports the classical orbital elements:


	Semimajor axis $(a)$.


	Eccentricity $(e)$.


	Inclination $(i)$.


	Right ascension of the ascending node $(\Omega)$.


	Argument of pericenter $(\omega)$.


	True anomaly $(\nu)$.




In this case, you’d use the method from_classical():

# Data for Mars at J2000 from JPL HORIZONS
a = 1.523679 << u.AU
ecc = 0.093315 << u.one
inc = 1.85 << u.deg
raan = 49.562 << u.deg
argp = 286.537 << u.deg
nu = 23.33 << u.deg

orb = Orbit.from_classical(Sun, a, ecc, inc, raan, argp, nu)





Notice that whether you create an Orbit from $(r)$ and $(v)$ or from elements you can access many mathematical properties of the orbit:

>>> orb.period.to(u.day)
<Quantity 686.9713888628166 d>
>>> orb.v
<Quantity [  1.16420211, 26.29603612,  0.52229379] km / s>





To see a complete list of properties, check out the Orbit class on the API reference.



Moving forward in time: propagation

Now that you have defined an orbit, you might be interested in computing how is it going to evolve in the future. In the context of orbital mechanics, this process is known as propagation.

For example, start by importing an example orbit from the International Space Station:

>>> from hapsira.examples import iss
>>> iss
6772 x 6790 km x 51.6 deg (GCRS) orbit around Earth (♁)
>>> iss.epoch
<Time object: scale='utc' format='iso' value=2013-03-18 12:00:00.000>
>>> iss.nu.to(u.deg)
<Quantity 46.595804677061956 deg>
>>> iss.n.to(u.deg / u.min)
<Quantity 3.887010576192155 deg / min>





Using the propagate() method you can now retrieve the position of the ISS after some time:

>>> iss_30m = iss.propagate(30 << u.min)
>>> iss_30m.epoch  # Notice you advanced the epoch!
<Time object: scale='utc' format='iso' value=2013-03-18 12:30:00.000>
>>> iss_30m.nu.to(u.deg)
<Quantity 163.1409357544868 deg>





To explore different propagation algorithms, check out the hapsira.twobody.propagation module.



Studying trajectories: Ephem objects

The propagate method gives you the final orbit at the epoch you designated. To retrieve the whole trajectory instead, you can use hapsira.twobody.orbit.scalar.Orbit.to_ephem(), which returns an Ephem instance:

from hapsira.twobody.sampling import EpochsArray, TrueAnomalyBounds, EpochBounds
from hapsira.util import time_range

start_date = Time("2022-07-11 05:05", scale="utc")
end_date = Time("2022-07-11 07:05", scale="utc")

# One full revolution
ephem1 = iss.to_ephem()

# Explicit times given
ephem2 = iss.to_ephem(strategy=EpochsArray(epochs=time_range(start_date, end_date)))

# Automatic grid, true anomaly limits
ephem3 = iss.to_ephem(strategy=TrueAnomalyBounds(min_nu=0 << u.deg, max_nu=180 << u.deg))

# Automatic grid, epoch limits
ephem4 = iss.to_ephem(strategy=EpochBounds(min_epoch=start_date, max_epoch=end_date))





Ephem objects contain the coordinates of an object sampled at specific times. You can access both:

>>> ephem1.epochs[:3]
<Time object: scale='utc' format='iso' value=['2013-03-18 12:23:55.155' '2013-03-18 12:24:51.237'
 '2013-03-18 12:25:47.323']>
>>> ephem1.sample(ephem1.epochs[:3])
<CartesianRepresentation (x, y, z) in km
    [( 859.07256   , -4137.20368   , 5295.56871   ),
     (1270.55257535, -4012.16848983, 5309.55706958),
     (1676.93829596, -3870.95571409, 5302.1480373 )]
 (has differentials w.r.t.: 's')>







Studying non-keplerian orbits: perturbations

Apart from the Keplerian propagators, hapsira also allows you to define custom perturbation accelerations to study non Keplerian orbits, thanks to Cowell’s method:

>>> from numba import njit
>>> import numpy as np
>>> from hapsira.core.propagation import func_twobody
>>> from hapsira.twobody.propagation import CowellPropagator
>>> r0 = [-2384.46, 5729.01, 3050.46] << u.km
>>> v0 = [-7.36138, -2.98997, 1.64354] << (u.km / u.s)
>>> initial = Orbit.from_vectors(Earth, r0, v0)
>>> @njit
... def accel(t0, state, k):
...     """Constant acceleration aligned with the velocity. """
...     v_vec = state[3:]
...     norm_v = (v_vec * v_vec).sum() ** 0.5
...     return 1e-5 * v_vec / norm_v
...
... def f(t0, u_, k):
...     du_kep = func_twobody(t0, u_, k)
...     ax, ay, az = accel(t0, u_, k)
...     du_ad = np.array([0, 0, 0, ax, ay, az])
...     return du_kep + du_ad

>>> initial.propagate(3 << u.day, method=CowellPropagator(f=f))
18255 x 21848 km x 28.0 deg (GCRS) orbit around Earth (♁) at epoch J2000.008 (TT)





Some natural perturbations are available in hapsira to be used directly in this way. For instance, to examine the effect of J2 perturbation:

>>> from hapsira.core.perturbations import J2_perturbation
>>> tofs = [48.0] << u.h
>>> def f(t0, u_, k):
...     du_kep = func_twobody(t0, u_, k)
...     ax, ay, az = J2_perturbation(
...         t0, u_, k, J2=Earth.J2.value, R=Earth.R.to(u.km).value
...     )
...     du_ad = np.array([0, 0, 0, ax, ay, az])
...     return du_kep + du_ad

>>> final = initial.propagate(tofs, method=CowellPropagator(f=f))





The J2 perturbation changes the orbit parameters (from Curtis example 12.2):

>>> ((final.raan - initial.raan) / tofs).to(u.deg / u.h)
<Quantity -0.17232668 deg / h>
>>> ((final.argp - initial.argp) / tofs).to(u.deg / u.h)
<Quantity 0.28220397 deg / h>







Studying artificial perturbations: thrust

In addition to natural perturbations, hapsira also has built-in artificial perturbations (thrust guidance laws) aimed at intentional change of some orbital elements. For example, to simultaneously change eccentricity and inclination:

>>> ecc_0, ecc_f = [0.4, 0.0] << u.one
>>> a = 42164 << u.km
>>> inc_0 = 0.0 << u.deg  # baseline
>>> inc_f = 20.0 << u.deg
>>> argp = 0.0  << u.deg  # the method is efficient for 0 and 180
>>> f = 2.4e-7 << (u.km / u.s ** 2)

# Retrieve r and v from initial orbit
>>> orb0 = Orbit.from_classical(
...     Earth,
...     a,
...     ecc_0,
...     inc_0,
...     0,
...     argp,
...     0,
... )
>>> a_d, _, t_f = change_ecc_inc(orb0, ecc_f, inc_f, f)

# Propagate orbit
>>> def f_geo(t0, u_, k):
...     du_kep = func_twobody(t0, u_, k)
...     ax, ay, az = a_d(t0, u_, k)
...     du_ad = np.array([0, 0, 0, ax, ay, az])
...     return du_kep + du_ad

>>> orbf = orb0.propagate(t_f << u.s, method=CowellPropagator(f=f_geo, rtol=1e-8))





The thrust changes orbit parameters as desired (within errors):

>>> orbf.inc, orbf.ecc
(<Quantity 0.34719734 rad>, <Quantity 0.00894513>)





For more available thrust guidance laws options, see the hapsira.twobody.thrust module.


Changing the orbit: Maneuver objects

hapsira helps defining several in-plane and general out-of-plane maneuvers with the Maneuver class.

Each Maneuver consists on a list of impulses $\Delta v_i$ (changes in velocity), each one applied at a certain instant $t_i$. The simplest maneuver is a single change of velocity without delay: you can recreate it either using the impulse() method or instantiating it directly.

from hapsira.maneuver import Maneuver

dv = [5, 0, 0] << (u.m / u.s)

imp = Maneuver.impulse(dv)
imp = Maneuver((0 << u.s, dv))  # Equivalent





There are other useful methods you can use to compute common in-plane maneuvers, notably {py:meth} ~hapsira.maneuver.Maneuver.hohmann and bielliptic() for Hohmann [https://en.wikipedia.org/wiki/Hohmann_transfer_orbit] and bielliptic [https://en.wikipedia.org/wiki/Bi-elliptic_transfer] transfers respectively. Both return the corresponding Maneuver object, which in turn you can use to calculate the total cost in terms of velocity change $\sum |\Delta v_i|$ and the transfer time:

>>> orb_i = Orbit.circular(Earth, alt=700 << u.km)
>>> orb_i
7078 x 7078 km x 0.0 deg (GCRS) orbit around Earth (♁)
>>> hoh = Maneuver.hohmann(orb_i, 36000 << u.km)
>>> hoh.get_total_cost()
<Quantity 3.6173981270031357 km / s>
>>> hoh.get_total_time()
<Quantity 15729.741535747102 s>





You can also retrieve the individual vectorial impulses:

>>> hoh.impulses[0]
(<Quantity 0 s>, <Quantity [ 0.        , 2.19739818, 0.        ] km / s>)
>>> hoh[0]  # Equivalent
(<Quantity 0 s>, <Quantity [ 0.        , 2.19739818, 0.        ] km / s>)
>>> tuple(val.decompose([u.km, u.s]) for val in hoh[1])
(<Quantity 15729.741535747102 s>, <Quantity [ 0.        , 1.41999995, 0.        ] km / s>)





To actually retrieve the resulting Orbit after performing a maneuver, use the method apply_maneuver():

>>> orb_f = orb_i.apply_maneuver(hoh)
>>> orb_f
36000 x 36000 km x 0.0 deg (GCRS) orbit around Earth (♁)







More advanced plotting: OrbitPlotter objects

You previously saw the plot() method to easily plot orbits. Now you might want to plot several orbits in one graph (for example, the maneuver you computed in the previous section). For this purpose, hapsira has an OrbitPlotter object in the plotting module.

The advantage of this object is that it allows you to select the desired drawing backend. All the supported backends are specified in the dictionary SUPPORTED_ORBIT_PLOTTER_BACKENDS.

If you would like to know which 2D check the SUPPORTED_ORBIT_PLOTTER_BACKENDS_2D. For 3D backends, refer to SUPPORTED_ORBIT_PLOTTER_BACKENDS_3D.

Note that some backends are interactive, meaning that you can move the scene or even rotate the three-dimensional view in a dynamic way.

To easily visualize several orbits in two dimensions, you can run this code:

from hapsira.plotting import OrbitPlotter

op = OrbitPlotter(backend_name="matplotlib2D")
orb_a, orb_f = orb_i.apply_maneuver(hoh, intermediate=True)
op.plot(orb_i, label="Initial orbit")
op.plot(orb_a, label="Transfer orbit")
op.plot(orb_f, label="Final orbit")
op.show()





which produces this beautiful plot:


[image: Hohmann transfer]

Plot of a Hohmann transfer.





Where are the planets? Computing celestial ephemerides


New in version 0.14.0.



Thanks to Astropy and jplephem, hapsira can read Satellite Planet Kernel (SPK) files, part of NASA’s SPICE toolkit. This means that you can query the position and velocity of the planets of the Solar system.

The hapsira.ephem.Ephem class allows you to retrieve a planetary orbit using low precision ephemerides available in Astropy:

>>> from astropy.time import Time
>>> epoch = time.Time("2020-04-29 10:43")  # UTC by default
>>> from hapsira.ephem import Ephem
>>> earth = Ephem.from_body(Earth, epoch.tdb)
>>> earth
Ephemerides at 1 epochs from 2020-04-29 10:44:09.186 (TDB) to 2020-04-29 10:44:09.186 (TDB)





This does not require any external download. If on the other hand you want to use higher precision ephemerides, you can tell Astropy to do so:

>>> from astropy.coordinates import solar_system_ephemeris
>>> solar_system_ephemeris.set("jpl")
Downloading http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430.bsp
|==========>-------------------------------|  23M/119M (19.54%) ETA    59s22ss23





This in turn will download the ephemerides files from NASA and use them for future computations. For more information, check out Astropy documentation on ephemerides [https://docs.astropy.org/en/stable/coordinates/solarsystem.html].

If you want to retrieve the osculating orbit at a given epoch, you can do so using from_ephem():

>>> Orbit.from_ephem(Sun, earth, epoch)
1 x 1 AU x 23.4 deg (HCRS) orbit around Sun (☉) at epoch 2020-04-29 10:43:00.000 (UTC)






Note

Notice that the position and velocity vectors are given with respect to the Heliocentric Celestial Reference System (HCRS) which means equatorial coordinates centered on the Sun.



In addition, hapsira supports fetching orbital information from 2 online databases: Small Body Database Browser (SBDB) and JPL HORIZONS.

HORIZONS can be used to generate ephemerides for solar-system bodies, while SBDB provides model orbits for all known asteroids and many comets. The data is fetched using the wrappers to these services provided by astroquery [https://astroquery.readthedocs.io/]:

epoch = Time("2020-04-29 10:43")

ephem_ceres = Ephem.from_horizons("Ceres", epoch)
orbit_apophis = Orbit.from_sbdb("Apophis")








Traveling through space: solving the Lambert problem

The determination of an orbit given two position vectors and the time of flight is known in celestial mechanics as Lambert’s problem, also known as the two body boundary value problem. This contrasts with Kepler’s problem or propagation, which is rather an initial value problem.

hapsira allows you to solve Lambert’s problem by passing the initial and final orbits to hapsira.maneuver.Maneuver.lambert() instance. The time of flight is computed internally since orbits epochs are known.

For instance, this is a simplified version of the example “Going to Mars with Python using hapsira”, where the orbit of the Mars Science Laboratory mission (rover Curiosity) is determined:

date_launch = Time('2011-11-26 15:02', scale='tdb')
date_arrival = Time('2012-08-06 05:17', scale='tdb')

orb0 = Orbit.from_ephem(Sun, Ephem.from_body(Earth, date_launch), date_launch)
orbf = Orbit.from_ephem(Sun, Ephem.from_body(Mars, date_arrival), date_arrival)

man_lambert = Maneuver.lambert(orb0, orbf)
dv_a, dv_b = man_lambert.impulses





And these are the results:

>>> dv_a
(<Quantity 0. s>, <Quantity [-2.06420561,  2.58796837,  0.23911543] km / s>)
>>> dv_b
(<Quantity 21910501.00019529 s>, <Quantity [287832.91384349,  58935.96079319, -94156.93383463] km / s>)






[image: Plot of the orbit]



Creating a CZML document

You can create CZML documents which can then be visualized with the help of Cesium [https://cesium.com/platform/cesiumjs/].

First, load the orbital data and the CZML Extractor:

from hapsira.examples import molniya, iss
from hapsira.czml.extract_czml import CZMLExtractor





Then, specify the starting and ending epoch, as well as the number of sample points (the higher the number, the more accurate the trajectory):

start_epoch = iss.epoch
end_epoch = iss.epoch + molniya.period
sample_points = 10

extractor = CZMLExtractor(start_epoch, end_epoch, sample_points)

extractor.add_orbit(molniya, label_text="Molniya")
extractor.add_orbit(iss, label_text="ISS")





Finaly, generate the CZML file by calling extractor.packets. There is more information in this sample Cesium application [https://github.com/poliastro/cesium-app/blob/master/README.md].

Per Python ad astra ;)
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Gallery

The following page contains a collection of practical examples and problems solved with hapsira. From interplanetary transfers, to asteroid-catching missions or even propagation under external perturbations. In addition, the user might come across tutorials related on how to use and customize the plotting utilities, insight on the API capabilities and many other topics related to orbital mechanics.
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Analyzing the Parker Solar Probe flybys


1. Modulus of the exit velocity, some features of Orbit #2

First, using the data available in the reports, we try to compute some of the properties of orbit #2. This is not enough to completely define the trajectory, but will give us information later on in the process:


[1]:





from astropy import units as u








[2]:





T_ref = 150 * u.day
T_ref








[2]:







$150 \; \mathrm{d}$





[3]:





from hapsira.bodies import Earth, Sun, Venus








[4]:





k = Sun.k
k








[4]:







$1.3271244 \times 10^{20} \; \mathrm{\frac{m^{3}}{s^{2}}}$





[5]:





import numpy as np








\[T = 2 \pi \sqrt{\frac{a^3}{\mu}} \Rightarrow a = \sqrt[3]{\frac{\mu T^2}{4 \pi^2}}\]


[6]:





a_ref = np.cbrt(k * T_ref**2 / (4 * np.pi**2)).to(u.km)
a_ref.to(u.au)








[6]:







$0.55249526 \; \mathrm{AU}$





\[\varepsilon = -\frac{\mu}{r} + \frac{v^2}{2} = -\frac{\mu}{2a} \Rightarrow v = +\sqrt{\frac{2\mu}{r} - \frac{\mu}{a}}\]


[7]:





energy_ref = (-k / (2 * a_ref)).to(u.J / u.kg)
energy_ref








[7]:







$-8.0283755 \times 10^{8} \; \mathrm{\frac{J}{kg}}$





[8]:





from astropy.time import Time

from hapsira.ephem import Ephem
from hapsira.util import norm








[9]:





flyby_1_time = Time("2018-09-28", scale="tdb")
flyby_1_time








[9]:







<Time object: scale='tdb' format='iso' value=2018-09-28 00:00:00.000>







[10]:





r_mag_ref = norm(Ephem.from_body(Venus, flyby_1_time).rv()[0].squeeze())
r_mag_ref.to(u.au)








[10]:







$0.72573132 \; \mathrm{AU}$





[11]:





v_mag_ref = np.sqrt(2 * k / r_mag_ref - k / a_ref)
v_mag_ref.to(u.km / u.s)








[11]:







$28.967364 \; \mathrm{\frac{km}{s}}$






2. Lambert arc between #0 and #1

To compute the arrival velocity to Venus at flyby #1, we have the necessary data to solve the boundary value problem:


[12]:





d_launch = Time("2018-08-11", scale="tdb")
d_launch








[12]:







<Time object: scale='tdb' format='iso' value=2018-08-11 00:00:00.000>







[13]:





r0, _ = Ephem.from_body(Earth, d_launch).rv()
r1, V = Ephem.from_body(Venus, flyby_1_time).rv()








[14]:





r0 = r0[0]
r1 = r1[0]
V = V[0]








[15]:





tof = flyby_1_time - d_launch








[16]:





from hapsira import iod








[17]:





v0, v1_pre = iod.lambert(Sun.k, r0, r1, tof.to(u.s))








[18]:





v0








[18]:







$[9.5993373,~11.298552,~2.9244933] \; \mathrm{\frac{km}{s}}$





[19]:





v1_pre








[19]:







$[-16.980821,~23.307528,~9.1312908] \; \mathrm{\frac{km}{s}}$





[20]:





norm(v1_pre)








[20]:







$30.248465 \; \mathrm{\frac{km}{s}}$






3. Flyby #1 around Venus

We compute a flyby using hapsira with the default value of the entry angle, just to discover that the results do not match what we expected:


[21]:





from hapsira.threebody.flybys import compute_flyby








[22]:





V.to(u.km / u.day)








[22]:







$[648499.74,~2695078.4,~1171563.7] \; \mathrm{\frac{km}{d}}$





[23]:





h = 2548 * u.km








[24]:





d_flyby_1 = Venus.R + h
d_flyby_1.to(u.km)








[24]:







$8599.8 \; \mathrm{km}$





[25]:





V_2_v_, delta_ = compute_flyby(v1_pre, V, Venus.k, d_flyby_1)








[26]:





norm(V_2_v_)








[26]:







$27.755339 \; \mathrm{\frac{km}{s}}$






4. Optimization

Now we will try to find the value of \(\theta\) that satisfies our requirements:


[27]:





from hapsira.twobody import Orbit








[28]:





def func(theta):
    V_2_v, _ = compute_flyby(v1_pre, V, Venus.k, d_flyby_1, theta * u.rad)
    orb_1 = Orbit.from_vectors(Sun, r1, V_2_v, epoch=flyby_1_time)
    return (orb_1.period - T_ref).to(u.day).value







There are two solutions:


[29]:





from matplotlib import pyplot as plt








[30]:





theta_range = np.linspace(0, 2 * np.pi)
plt.plot(theta_range, [func(theta) for theta in theta_range])
plt.axhline(0, color="k", linestyle="dashed")








[30]:







<matplotlib.lines.Line2D at 0x7f00399b4310>
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[31]:





func(0)








[31]:







-9.142672330001218







[32]:





func(1)








[32]:







7.098115439345711







[33]:





from scipy.optimize import brentq








[34]:





theta_opt_a = brentq(func, 0, 1) * u.rad
theta_opt_a.to(u.deg)








[34]:







$38.598709 \; \mathrm{{}^{\circ}}$





[35]:





theta_opt_b = brentq(func, 4, 5) * u.rad
theta_opt_b.to(u.deg)








[35]:







$279.3477 \; \mathrm{{}^{\circ}}$





[36]:





V_2_v_a, delta_a = compute_flyby(v1_pre, V[0], Venus.k, d_flyby_1, theta_opt_a)
V_2_v_b, delta_b = compute_flyby(v1_pre, V[0], Venus.k, d_flyby_1, theta_opt_b)








[37]:





norm(V_2_v_a)








[37]:







$29.978799 \; \mathrm{\frac{km}{s}}$





[38]:





norm(V_2_v_b)








[38]:







$29.491925 \; \mathrm{\frac{km}{s}}$






5. Exit orbit

And finally, we compute orbit #2 and check that the period is the expected one:


[39]:





ss01 = Orbit.from_vectors(Sun, r1, v1_pre, epoch=flyby_1_time)
ss01








[39]:







0 x 1 AU x 18.8 deg (HCRS) orbit around Sun (☉) at epoch 2018-09-28 00:00:00.000 (TDB)






The two solutions have different inclinations, so we still have to find out which is the good one. We can do this by computing the inclination over the ecliptic - however, as the original data was in the International Celestial Reference Frame (ICRF), whose fundamental plane is parallel to the Earth equator of a reference epoch, we have to change the plane to the Earth ecliptic, which is what the original reports use:


[40]:





orb_1_a = Orbit.from_vectors(Sun, r1, V_2_v_a, epoch=flyby_1_time)
orb_1_a








[40]:







0 x 1 AU x 24.0 deg (HCRS) orbit around Sun (☉) at epoch 2018-09-28 00:00:00.000 (TDB)







[41]:





orb_1_b = Orbit.from_vectors(Sun, r1, V_2_v_b, epoch=flyby_1_time)
orb_1_b








[41]:







0 x 1 AU x 13.3 deg (HCRS) orbit around Sun (☉) at epoch 2018-09-28 00:00:00.000 (TDB)







[42]:





from hapsira.frames import Planes








[43]:





orb_1_a.change_plane(Planes.EARTH_ECLIPTIC)








[43]:







0 x 1 AU x 3.4 deg (HeliocentricEclipticIAU76) orbit around Sun (☉) at epoch 2018-09-28 00:00:00.000 (TDB)







[44]:





orb_1_b.change_plane(Planes.EARTH_ECLIPTIC)








[44]:







0 x 1 AU x 12.8 deg (HeliocentricEclipticIAU76) orbit around Sun (☉) at epoch 2018-09-28 00:00:00.000 (TDB)






Therefore, the correct option is the first one:


[45]:





orb_1_a.period.to(u.day)








[45]:







$158.75975 \; \mathrm{d}$





[46]:





orb_1_a.a








[46]:







$85839412 \; \mathrm{km}$




And, finally, we plot the solution:


[47]:





from hapsira.plotting import OrbitPlotter

frame = OrbitPlotter(plane=Planes.EARTH_ECLIPTIC)

frame.plot_body_orbit(Earth, d_launch)
frame.plot_body_orbit(Venus, flyby_1_time)
frame.plot(ss01, label="#0 to #1", color="C2")
frame.plot(orb_1_a, label="#1 to #2", color="C3")








[47]:







(<matplotlib.lines.Line2D at 0x7f00373cfcd0>,
 <matplotlib.lines.Line2D at 0x7f00373cfdf0>)
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The atmosphere and its layers

The World Meteorological Organization (WMO) defines the atmosphere as:

``A hypothetical vertical distribution of atmospheric temperature, pressure and density which by international agreement and for historical reasons, is roughly representative of year-round, midlatitude conditions.``

In fact, the atmosphere is the mean that makes the link between the ground and space and it is crucial when studying perturbations since drag affects LEO satellites.

Therefore, it was necessary to develop some mathematical model that could predict all the different conditions stated in WMO atmosphere definition for given altitudes.

Along history different models have been developed:


	ISA: up to 11 km.


	ISA-ICAO: up to 80 km.


	COESA 1962: up to 700 km.


	COESA 1976: up to 1000 km.


	Jacchia-Roberts




Since some of them are implemented in hapsira, let us compare the differences among them:


[1]:





from astropy import units as u

from matplotlib import pyplot as plt
import numpy as np

from hapsira.earth.atmosphere import COESA62, COESA76








Comparing coesa62 and coesa76

Also known as U.S. Standard Atmosphere, the atmospheric model coesa76 is just an update of its little brother coesa62. The difference is that geopotential heights diverge for higher altitudes.

Let us plot the Temperature as increasing altitude for both atmospheric models:


[2]:





# We build the atmospheric instances
coesa62 = COESA62()
coesa76 = COESA76()

# Create the figure
fig, ax = plt.subplots(figsize=(10, 10))
ax.set_title("U.S Standard Atmospheres")

# Collect all atmospheric models and define their plotting properties
atm_models = {
    coesa62: ["--r", "r", "Coesa 1962"],
    coesa76: ["-b", "b", "Coesa 1976"],
}

# Solve atmospheric temperature for each of the models
for atm in atm_models:
    z_span = np.linspace(0, 86, 100) * u.km
    T_span = np.array([]) * u.K
    for z in z_span:
        # We discard density and pressure
        T = atm.temperature(z)
        T_span = np.append(T_span, T)

    # Temperature plot
    ax.plot(T_span, z_span, atm_models[atm][0], label=atm_models[atm][-1])
    ax.plot(atm.Tb_levels[:8], atm.zb_levels[:8], atm_models[atm][1] + "o")
    ax.set_xlim(150, 300)
    ax.set_ylim(0, 100)
    ax.set_xlabel("Temperature $[K]$")
    ax.set_ylabel("Altitude $[km]$")
    ax.legend()

# Add some information on the plot
ax.annotate(
    "Tropopause",
    xy=(coesa76.Tb_levels[1].value, coesa76.zb_levels[1].value),
    xytext=(coesa76.Tb_levels[1].value + 10, coesa76.zb_levels[1].value + 5),
    arrowprops=dict(arrowstyle="simple", facecolor="black"),
)
ax.annotate(
    "Stratopause",
    xy=(coesa76.Tb_levels[4].value, coesa76.zb_levels[4].value),
    xytext=(coesa76.Tb_levels[4].value - 25, coesa76.zb_levels[4].value + 5),
    arrowprops=dict(arrowstyle="simple", facecolor="black"),
)
ax.annotate(
    "Mesopause",
    xy=(coesa76.Tb_levels[7].value, coesa76.zb_levels[7].value),
    xytext=(coesa76.Tb_levels[7].value + 10, coesa76.zb_levels[7].value + 5),
    arrowprops=dict(arrowstyle="simple", facecolor="black"),
)

# Layers in the atmosphere
for h in [11.019, 47.350, 86]:
    ax.axhline(h, color="k", linestyle="--", xmin=0.0, xmax=0.35)
    ax.axhline(h, color="k", linestyle="-", xmin=0.0, xmax=0.15)

layer_names = {
    "TROPOSPHERE": 5,
    "STRATOSPHERE": 30,
    "MESOSPHERE": 65,
    "THERMOSPHERE": 90,
}
for name in layer_names:
    ax.annotate(
        name,
        xy=(152, layer_names[name]),
        xytext=(152, layer_names[name]),
    )












[image: ../_images/examples_atmospheric-models_3_0.png]







Temperature, pressure and density distributions

One of the advantages of COESA76 is that it extends up to 1000 kilometers. The behaviour of previous magnitudes against geometrical altitude can be checked in the following figure. A logarithmic scale is applied for pressure and density to better see their decay for high altitude values:


[3]:





# We create the basis for the figure
fig, axs = plt.subplots(1, 3, figsize=(12, 5))
fig.suptitle("State variables against altitude", fontweight="bold")

# Complete altitude range and initialization of state variables sets
alt_span = np.linspace(0, 1000, 1001) * u.km
T_span = np.array([]) * u.K
p_span = np.array([]) * u.Pa
rho_span = np.array([]) * u.kg / u.m**3

# We solve for each property at given altitude
for alt in alt_span:
    T, p, rho = coesa76.properties(alt)
    T_span = np.append(T_span, T)
    p_span = np.append(p_span, p.to(u.Pa))
    rho_span = np.append(rho_span, rho)

# Temperature plot
axs[0].set_title("Temperature")
axs[0].set_xlabel("T [K]")
axs[0].set_ylabel("Altitude [K]")
axs[0].plot(T_span, alt_span)

# Pressure plot
axs[1].set_title("Pressure")
axs[1].set_xlabel("p [Pa]")
axs[1].plot(p_span, alt_span)
axs[1].set_xscale("log")

# Density plot
axs[2].set_title("Density")
axs[2].set_xlabel(r"$\rho$ [kg/m3]")
axs[2].plot(rho_span, alt_span)
axs[2].set_xscale("log")
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Catch that asteroid!

First, we need to increase the timeout time to allow the download of data occur properly:


[1]:





from astropy.utils.data import conf

conf.dataurl








[1]:







'http://data.astropy.org/'







[2]:





conf.remote_timeout








[2]:







10.0







[3]:





conf.remote_timeout = 10000







Then, we do the rest of the imports:


[4]:





from astropy import units as u
from astropy.time import Time, TimeDelta
from astropy.coordinates import solar_system_ephemeris

solar_system_ephemeris.set("jpl")

from hapsira.bodies import Sun, Earth, Moon
from hapsira.ephem import Ephem
from hapsira.frames import Planes
from hapsira.plotting import OrbitPlotter
from hapsira.plotting.misc import plot_solar_system
from hapsira.twobody import Orbit
from hapsira.util import norm, time_range

EPOCH = Time("2017-09-01 12:05:50", scale="tdb")
C_FLORENCE = "#000"
C_MOON = "#999"








[5]:





Earth.plot(EPOCH)








[5]:







(<matplotlib.lines.Line2D at 0x7f6aedd034c0>,
 <matplotlib.lines.Line2D at 0x7f6aedd03790>)
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Our first option to retrieve the orbit of the Florence asteroid is to use Orbit.from_sbdb, which gives us the osculating elements at a certain epoch:


[6]:





florence_osc = Orbit.from_sbdb("Florence")
florence_osc








[6]:







1 x 3 AU x 22.1 deg (HeliocentricEclipticIAU76) orbit around Sun (☉) at epoch 2460200.500800723 (TDB)






However, the epoch of the result is not close to the time of the close approach we are studying:


[7]:





florence_osc.epoch.iso








[7]:







'2023-09-13 00:01:09.182'






Therefore, if we propagate this orbit to EPOCH, the results will be a bit different from the reality. Therefore, we need to find some other means.

Let’s use the Ephem.from_horizons method as an alternative, sampling over a period of 6 months:


[8]:





epochs = time_range(
    EPOCH - TimeDelta(3 * 30 * u.day), end=EPOCH + TimeDelta(3 * 30 * u.day)
)








[9]:





florence = Ephem.from_horizons("Florence", epochs, plane=Planes.EARTH_ECLIPTIC)
florence








[9]:







Ephemerides at 50 epochs from 2017-06-03 12:05:50.000 (TDB) to 2017-11-30 12:05:50.000 (TDB)







[10]:





florence.plane








[10]:







<Planes.EARTH_ECLIPTIC: 'Earth mean Ecliptic and Equinox of epoch (J2000.0)'>






And now, let’s compute the distance between Florence and the Earth at that epoch:


[11]:





earth = Ephem.from_body(Earth, epochs, plane=Planes.EARTH_ECLIPTIC)
earth








[11]:







Ephemerides at 50 epochs from 2017-06-03 12:05:50.000 (TDB) to 2017-11-30 12:05:50.000 (TDB)







[12]:





min_distance = norm(florence.rv(EPOCH)[0] - earth.rv(EPOCH)[0]) - Earth.R
min_distance.to(u.km)








[12]:







$7060098.6 \; \mathrm{km}$




This value is consistent with what ESA says! \(7\,060\,160\) km



[13]:





abs((min_distance - 7060160 * u.km) / (7060160 * u.km)).decompose()








[13]:







$8.6917231 \times 10^{-6} \; \mathrm{}$





[14]:





from IPython.display import HTML

HTML(
    """<blockquote class="twitter-tweet" data-lang="en"><p lang="es" dir="ltr">La <a href="https://twitter.com/esa_es">@esa_es</a> ha preparado un resumen del asteroide <a href="https://twitter.com/hashtag/Florence?src=hash">#Florence</a> 😍 <a href="https://t.co/Sk1lb7Kz0j">pic.twitter.com/Sk1lb7Kz0j</a></p>&mdash; AeroPython (@AeroPython) <a href="https://twitter.com/AeroPython/status/903197147914543105">August 31, 2017</a></blockquote>
<script src="//platform.twitter.com/widgets.js" charset="utf-8"></script>"""
)








[14]:






La @esa_es ha preparado un resumen del asteroide #Florence 😍 pic.twitter.com/Sk1lb7Kz0j
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Customising static orbit plots

The default styling for plots works pretty well however sometimes you may need to change things. The following will show you how to change the style of your plots and have different types of lines and dots.

This is the default plot we will start with:


[1]:





from astropy.time import Time

from matplotlib import pyplot as plt

from hapsira.bodies import Earth, Mars, Jupiter, Sun
from hapsira.frames import Planes
from hapsira.plotting import OrbitPlotter
from hapsira.plotting.orbit.backends import Matplotlib2D
from hapsira.twobody import Orbit








[2]:





epoch = Time("2018-08-17 12:05:50", scale="tdb")

plotter = OrbitPlotter(plane=Planes.EARTH_ECLIPTIC)
plotter.plot_body_orbit(Earth, epoch, label="Earth")
plotter.plot_body_orbit(Mars, epoch, label="Mars")
plotter.plot_body_orbit(Jupiter, epoch, label="Jupiter")








[2]:







(<matplotlib.lines.Line2D at 0x7f2031252be0>,
 <matplotlib.lines.Line2D at 0x7f20312f14c0>)
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[3]:





epoch = Time("2018-08-17 12:05:50", scale="tdb")

plotter = OrbitPlotter(plane=Planes.EARTH_ECLIPTIC)
earth_plots_traj, earth_plots_pos = plotter.plot_body_orbit(
    Earth, epoch, label=Earth
)

earth_plots_traj.set_linestyle("-")  # solid line
earth_plots_traj.set_linewidth(0.5)
earth_plots_pos.set_marker("H")  # Hexagon
earth_plots_pos.set_markersize(15)

mars_plots = plotter.plot_body_orbit(Mars, epoch, label=Mars)
jupiter_plots = plotter.plot_body_orbit(Jupiter, epoch, label=Jupiter)












[image: ../_images/examples_customising-static-orbit-plots_4_0.png]




Here we get hold of the lines list from the OrbitPlotter.plot method this is a list of lines. The first is the orbit line. The second is the current position marker. With the matplotlib lines objects we can start changing the style. First we make the line solid but thin. Then we change the current position marker to a large hexagon.

More details of the style options for the markers can be found here: https://matplotlib.org/2.0.2/api/markers_api.html#module-matplotlib.markers. More details of the style options on lines can be found here: https://matplotlib.org/2.0.2/api/lines_api.html. However make sure that you use the set methods rather than just changing the attributes as the methods will force a re-draw of the plot.

Next we will make some changes to the other two orbits:


[4]:





epoch = Time("2018-08-17 12:05:50", scale="tdb")

plotter = OrbitPlotter()

earth_plots_t, earth_plots_p = plotter.plot_body_orbit(
    Earth, epoch, label=Earth
)
earth_plots_t.set_linestyle("-")  # solid line
earth_plots_t.set_linewidth(0.5)
earth_plots_p.set_marker("H")  # Hexagon
earth_plots_p.set_markersize(15)

mars_plots_t, mars_plots_p = plotter.plot_body_orbit(Mars, epoch, label=Mars)
mars_plots_t.set_dashes([0, 1, 0, 1, 1, 0])
mars_plots_t.set_linewidth(2)
mars_plots_p.set_marker("D")  # Diamond
mars_plots_p.set_markersize(15)
mars_plots_p.set_fillstyle("none")
# make sure this is set if you use fillstyle 'none'
mars_plots_p.set_markeredgewidth(1)

jupiter_plots_t, jupiter_plots_p = plotter.plot_body_orbit(
    Jupiter, epoch, label=Jupiter
)
jupiter_plots_t.set_linestyle("")  # No line
jupiter_plots_p.set_marker("*")  # star
jupiter_plots_p.set_markersize(15)












[image: ../_images/examples_customising-static-orbit-plots_6_0.png]




You can also change the style of the plot using the matplotlib axis which can be aquired from the OrbitPlotter().

See the following example that creates a grid, adds a title, and makes the background transparent. To make the changes clearer it goes back to the inital example:


[5]:





epoch = Time("2018-08-17 12:05:50", scale="tdb")

fig, ax = plt.subplots()

ax.grid(True)
ax.set_title("Earth, Mars, and Jupiter")
ax.set_facecolor("None")

backend = Matplotlib2D(ax=ax)
plotter = OrbitPlotter(backend=backend)

plotter.plot_body_orbit(Earth, epoch, label=Earth)
plotter.plot_body_orbit(Mars, epoch, label=Mars)
plotter.plot_body_orbit(Jupiter, epoch, label=Jupiter)








[5]:







(<matplotlib.lines.Line2D at 0x7f202d8be0d0>,
 <matplotlib.lines.Line2D at 0x7f202d8be280>)
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Visualize orbital data with Cesium

Poliastro allows users to easily convert orbital data to CZML, a JSON format primarily used in applications running Cesium.


Dependencies

You will only need hapsira (obviously) and czml3, a library for easily creating and using CZML packets:

pip install hapsira czml3



Our first example: The Molniya orbit

We’ll start off by using one of the readily usable hapsira examples. Of course, you can use any hapsira Orbit object:


[1]:





from hapsira.czml.extract_czml import CZMLExtractor








[2]:





from hapsira.examples import molniya







To initialize the extractor, you’ll only need the starting and ending epoch of the time period you wish to visualize and the number of sample points. The larger the sample point size, the more accurate the trajectory and the bigger your packets. Finding that sweet spot between reasonable package size and visual accuracy depends on the specific orbit. Generally, you’ll need a bigger sample for faster satellites. You could also “break” your orbit into different parts and define the sample size
individually (for example, this could be useful when the satellite accelerates within a certain time interval).

For this specific example, we’re only interested in a single orbital period:


[3]:





start_epoch = molniya.epoch
end_epoch = molniya.epoch + molniya.period
N = 80








[4]:





extractor = CZMLExtractor(start_epoch, end_epoch, N)







To add an orbit you can simply call add_orbit and pass your Orbit along with an optional precision parameter (rtol). However, there are also many optional parameters you can pass to the extractor to specify the visual characteristics of your trajectory:


Id parameters:

id_name: The orbit id name

id_description: The orbit’s description



Path parameters:

path_width: The trajectorie’s width. It’s defined in pixels and defaults to 1.0

path_show: Whether the trajectorie’s path is visible (true by default)

path_color: The trajectorie’s color, a simple list with the rgba values (e.g. [45, 30, 50, 255])



Label parameters:

label_text: The label text; the text that appears besides the orbit.

label_show: Whether the label is visible (true by default)

label_fill_color: The fill color of the label, a simple list with the rgba values

label_outline_color: The fill color of the label, a simple list with the rgba values

label_font: The font properties (CSS syntax)



Groundtrack parameters:

show_groundtrack: Whether the groundtrack is visible (true by default)

groundtrack_lead_time: The time the animation is ahead of the real-time groundtrack

groundtrack_trail_time: The time the animation is behind the real-time groundtrack

groundtrack_width: The groundtrack width

groundtrack_color: The groundtrack color. By default, it is set to the trajectory’s color


[5]:





extractor.add_orbit(
    molniya,
    id_name="MolniyaOrbit",
    path_width=2,
    label_text="Molniya",
    label_fill_color=[125, 80, 120, 255],
)







You can now export the extractor packets by simply calling extractor.packets and load it to the Cesium app as described here [https://github.com/hapsira/cesium-app]:

 >>> extractor.packets
 [{
    "id": "document",
    "version": "1.0",
    "name": "document_packet",
    "clock": {
        "interval": "2000-01-01T12:00:00Z/2000-01-01T23:59:35Z",
        "currentTime": "2000-01-01T12:00:00Z",
        "multiplier": 60,
        "range": "LOOP_STOP",
        "step": "SYSTEM_CLOCK_MULTIPLIER"
    }
}, [...]


Landing on Mars

You can customize the attractor of your orbit by defining any valid ellipsoid with the help of hapsira’s Body class. For your convenience, hapsira offers a pre-defined list of all the major planetary bodies of the solar system so you can simply import them:


[6]:





from hapsira.bodies import Mars







Of course, when defining a new attractor you want to be able to identify something other than it’s shape. For this reason, the extractor allows you to easily set the UV map by simply providing a valid URL:


[7]:





mars_uv = "https://upload.wikimedia.org/wikipedia/commons/f/fd/Mars_2020_LandingSites_Final_8-full.jpg"








[8]:





extractor = CZMLExtractor(
    start_epoch, end_epoch, N, attractor=Mars, pr_map=mars_uv
)








[9]:





extractor.packets








[9]:







[{
     "id": "document",
     "version": "1.0",
     "name": "document_packet",
     "clock": {
         "interval": "2000-01-01T12:00:00Z/2000-01-01T23:59:35Z",
         "currentTime": "2000-01-01T12:00:00Z",
         "multiplier": 60,
         "range": "LOOP_STOP",
         "step": "SYSTEM_CLOCK_MULTIPLIER"
     }
 },
 {
     "id": "custom_properties",
     "properties": {
         "custom_attractor": true,
         "ellipsoid": [
             {
                 "array": [
                     3396190.0,
                     3396190.0,
                     3376220.0
                 ]
             }
         ],
         "map_url": "https://upload.wikimedia.org/wikipedia/commons/f/fd/Mars_2020_LandingSites_Final_8-full.jpg",
         "scene3D": true
     }
 }]








Return to Flatland

Instead of a 3D globe you may want to visualize your orbit as a 2D projection instead. In this case you can simply set scene3D to false and Cesium will automatically render the scene’s orthographic projection. This can be of use when plotting animated groundtracks as we’ll see in the next section:


[10]:





extractor = CZMLExtractor(start_epoch, end_epoch, N, scene3D=False)








[11]:





extractor.packets








[11]:







[{
     "id": "document",
     "version": "1.0",
     "name": "document_packet",
     "clock": {
         "interval": "2000-01-01T12:00:00Z/2000-01-01T23:59:35Z",
         "currentTime": "2000-01-01T12:00:00Z",
         "multiplier": 60,
         "range": "LOOP_STOP",
         "step": "SYSTEM_CLOCK_MULTIPLIER"
     }
 },
 {
     "id": "custom_properties",
     "properties": {
         "custom_attractor": true,
         "ellipsoid": [
             {
                 "array": [
                     6378136.6,
                     6378136.6,
                     6356751.9
                 ]
             }
         ],
         "map_url": [
             "https://upload.wikimedia.org/wikipedia/commons/c/c4/Earthmap1000x500compac.jpg"
         ],
         "scene3D": false
     }
 }]








Ground track plotting

Another useful feature the extractor offers, is the ability to plot the ground track of an orbit. You can set the groundtrack by setting the aforementioned groundtrack_show parameter to true. Note that this also works in 2D view:


[12]:





extractor = CZMLExtractor(start_epoch, end_epoch, N)








[13]:





extractor.add_orbit(
    molniya,
    groundtrack_show=True,
    groundtrack_lead_time=20,
    groundtrack_trail_time=20,
)







>>> extractor.packets
[...]
{
   "id": "groundtrack0",
   "availability": "2000-01-01T12:00:00Z/2000-01-01T23:59:35Z",
   "position": {
       "epoch": "2000-01-01T12:00:00Z",
       "interpolationAlgorithm": "LAGRANGE",
       "interpolationDegree": 5,
       "referenceFrame": "INERTIAL",
       "cartesian": [
           0.0,
           6280728.255793354,
           -495875.9998745186, [...]



            

          

      

      

    

  

  
    
    

    New Horizons launch and trajectory
    

    

    

    

    

    

    

    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
New Horizons launch and trajectory

Main data source: Guo & Farquhar “New Horizons Mission Design” http://www.boulder.swri.edu/pkb/ssr/ssr-mission-design.pdf


[1]:





from astropy import time
from astropy import units as u

from hapsira import iod

from hapsira.bodies import Sun, Earth, Jupiter
from hapsira.ephem import Ephem
from hapsira.frames import Planes
from hapsira.plotting import O